


Chapter 2 - Quantum Theory 

 At the end of this chapter – the class will: 

 Have basic concepts of quantum physical phenomena and a 
rudimentary working knowledge of quantum physics 

 Have some familiarity with quantum mechanics and its 
application to atomic theory 

 Quantization of energy; energy levels 

 Quantum states, quantum number 

 Implication on band theory 

 

 



Chapter 2 Outline 
 Basic concept of quantization 

 Origin of quantum theory and key quantum phenomena 

 Quantum mechanics 

 Example and application to atomic theory 



Concept introduction 

Imagine you drive a car. You turn on engine and it 

immediately moves at 10 m/hr. You step on the gas 

pedal and it does nothing. You step on it harder and 

suddenly, the car moves at 40 m/hr. You step on the 

brake. It does nothing until you flatten the brake with 

all your might, and it suddenly drops back to 10 m/hr. 

What’s going on? 

The quantum car 



Continuous vs. Quantization 

Consider a billiard ball. It requires accuracy and precision. You 

have a cue stick. Assume for simplicity that there is no friction 

loss. How fast can you make the ball move using the cue stick? 

How much kinetic energy can you give to the ball?  

Let's shrink the table down to a very small size, and let the billiard ball become as small and light 

mass as an electron. Can you still do the same thing to its energy? 

The Newtonian mechanics answer is: 

• any value, as much as energy as you can deliver. The ball 

can be made moving with 1.000 joule, or 3.1415926535 or 

0.551 … joule. Supposed it is moving with 1-joule energy, 

you can give it an extra 0.24563166 joule by hitting it with the 

cue stick by that amount of energy. The ball will have 

1.24563166 joule. The energy value is continuous.  

Answer: NO. If you don't hit the ball (electron) with the right amount of energy, IT WON'T 

CHANGE. Supposed it is moving with 1x10-19 Joule, and you want it to be moving with 1.014x10-

19 Joule which happens not to be a value that it's happy with. You can hit it as many times as you 

want with 0.014x10-19 Joule, and nothing will happen. The ball just ignores your cue stick. 

The reason is that the energy of the quantum ball now is not continuous, but quantized into 

discrete values 



Quantization of energy 

Continuous energy: it can 

be any value on the axis 

Energy 
Energy 

Discrete (or quantized 

energy): it can ONLY be at 

certain values on the axis 

E1 E2 E3 E4 E5 

Key concept of the quantum world: 
• The energy can have discrete values: referred to as quantization 

• But it doesn’t have to be always discrete! It can be continuous also, and 

can be a mixed of discrete and continuum 

• How many discrete levels can a system have? 



How does a quantum billiard ball behave? 

Supposed that the quantum ball has energy E1 

If we hit it with a cue stick, what will happen? 

Answer:  
It depends, if the cue stick hits it with an energy DE 

such that E1+ DE does not coincide with any of the 

quantized levels or >= E5, it won't change! The 

quantum ball just ignores the cue stick. This is the 

major difference between quantum physics and 

classical physics. 

Energy E1 E2 E3 E4 E5 

DE 



How does a quantum billiard ball behave? 

Energy E1 E2 E3 E4 E5 

DE 

DE 
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General concept of quantization –quantum 
number 

• Quantization applies not just to energy. 

Many fundamental physical quantities are 

also quantized 

• What is quantized electric charge? (e) 

• Are the masses of objects quantized? 
• mass of electron? proton, neutron, neutrino, photon 

• A quantity that is absolutely quantized: angular 

momentum – what is the unit of a.m.? 

• Other: linear momentum 

• Sometimes, we associate a “number” to a quantized 

quantity, we call it “quantum number” 
 



A Question 
 A free electron in infinite space. Is it energy quantized? 

 No, it’s not. Quantum mechanics (QM) does not say that everything has to 
be quantized. 

 A free electron has an energy value: 

 

   where p is linear momentum, m is the mass, just like classical mechanics. p 

can be continuous, and so is the energy. 
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A Question 

 A free electron in infinite space. Is it energy quantized? 
 No … 

 But a bound electron, one which is under the influence of a force that 
holds electron to a “confined” region of space, has its energy quantized. 

- If the electron experiences a force, but the force is not enough to hold it 
to a finite region of space, is its energy quantized? No. So how do we 
know when the energy is quantized or not? We have to SOLVE the 
specific problem to find out. All QM says is that there is the possibility of 
quantization, depending on specific situations, this is different from 
Newtonian mechanics in which, there is no quantization at all.  



Countable and Uncountable 
Quantization has a major impact on physical theory. 
One case is the issue of countable and uncountable 
number of states. 

How many numbers are there in the set of all integer? 

How many real numbers between 0 and 1? 

Are the two sets, all integers and all real number from 0-1, equal? 

Are the set of real number countable? 

Quantization makes the number of states (or physical 

conditions, or solutions) countable. 

Is this some arcane, irrelevant math? No, it is a crucial 

difference between quantum and classical theory, and 

basically led to the discovery of the quantum theory: Max 

Planck’s black body radiation theory 



The Origin of the Quantum Theory: 
The black-body problem 

Any hot object emits electromagnetic waves; we call this 

thermal radiation. 

Find examples of this around you 

“red hot” objects in a furnace, the sun, the universe (3K background 

radiation). Do you think living thing emit radiation? How about us? Do 

you think we get cancer from our own thermal radiation? 

Do you think the RGB color we see from the TV screen thermal 

radiation? Why so and if not, why not?  

People have studied this in 19th century and observed that 

the hotter the object is, the brighter is the radiation, and also 

“redder” (shorter wavelength) 

How does the glow change as you heat up an object? 



Black-body radiation 

4

area Radiating

PowerRadiation  Thermal
T

Hotter object -> Brighter radiation: Stefan’s law 

 

emissivity Stefan-

Boltzmann 

constant 

temperature 

A perfectly absorbing object has emissivity=1. It absorbs 

all radiation falling on it, thus, it is a perfectly black object, 

called black-body. 

In real life, very hard to make a black body, one way to 

make it close to it is a cavity 

As shown, any light falling into the cavity aperture is most 

likely absorbed, thus, the radiation from the aperture 

should be like black-body  



Black-body radiation 
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Rayleigh –Jeans’ law based on Maxwell’s theory 
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What is the problem of this? What is 

this object color? 
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Ultraviolet catastrophe! Where does 

it go wrong? 



Planck quantum theory 

Planck proposed a bold concept of "quantum of action” 

A=p*x 

Later, Einstein coined the corpuscular theory of light: 

“photon” is the most fundamental light particle  

- The concept of indivisible light 

Does an electromagnetic wave carry energy? 

Or power? 

If so, what is the energy or power of an 

electromagnetic wave? 



Planck quantum theory 

hnE 

As it turns out, the energy of an electromagnetic 

wave cannot be arbitrarily small, and cannot be 

continuous according to Planck’s theory – rather, 

the energy of an electromagnetic wave is 

quantized. 

The amount of energy an electromagnetic wave 

mode in a black-body cavity can ONLY have 

discrete value: A new fundamental 

constant: Planck’s 

constant 

integer 



Planck quantum theory 

What happens? The number of modes 

suddenly go from uncountably infinite to 

countably infinite 
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With this, Planck shows that the result 

should be: 

wavelength 

Planck’s constant 

frequency 



Planck’s theory of black-body radiation 
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What is Planck’s constant? 
h=6.63 x 10-34 Joule sec.  
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Energy of a photon of frequency : 

Link photon energy to the color of light 



The electromagnetic spectrum 

From LBL 



Second crucial evidence of the 
Quantum theory: photoelectric effect 

Frank-Hertz experiment 

• The existence of threshold: photon 

frequency must exceed a certain value (not 

intensity) 

• Energy of photoelectrons is proportional to 

frequency - NOT intensity. The proportional 

constant is Planck constant – (Milliken exp) 



The photoelectric effect (cont.) 
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Discrete Lines in Atomic Vapor Spectra 

Key concepts 

• Optical spectra 

• Continuous spectra vs. quantized 

spectra 

http://library.thinkquest.org 



Where do the light come from? What do the 
spectra tell you? 

http://library.thinkquest.org 



Atomic spectra 
• Most common and natural light 

sources have continuous spectra. 

• Atomic vapor spectra, however 

have discrete lines 
• Where do the light come from? What 

do the spectra tell you? 

• Some exhibit simple mathematical 

relations: Balmer series, Lyman 

series, Paschen series 

• Rydberg showed that all these 

series can be based on a 

“quantized” expression of energy: 

2n

R
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What observed is the difference energy (or 

transition energy): 

Rydberg constant 

n= 1,2,3… 

quantum number 
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k=2: Balmer series 

k=1: Lyman series 

k=3: Paschen 

http://library.thinkquest.org 



Hydrogen atom emission spectra 
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How about Balmer series? 

And Paschen series? 

physics.colorado 



Birth of the Quantum Theory 
 Evidences were mounting that energy of light, electrons 

in atoms are quantized 

 Discovery of fundamental particles smaller than atom 

 Quantized charges 

 Classical physics: Newtonian mechanics, Maxwell 
electromagnetic theories could not account for quantum 
phenomena 



Evolution of Quantum Mechanics 
 Old quantum theory: Bohr-Sommerfeld’s atomic model. Newtonian 

mechanics for electron motion relative to the proton. Postulate: angular 
momentum is quantized, which leads to energy quantization and orbital 
quantum number 

• Unfortunately, it did not take 

long to see that the model 

could not explain many other 

phenomena. 

• Magnetic quantum number and 

Anomalous Zeeman effect: 
 atomic spectral lines split under a magnetic field. The split does not 

conform to Bohr-Sommerfeld model.  

• Discovery of electron spin. Zeeman split into even, rather than odd 

number of lines: anomalous Zeeman effect 

• Old quantum theory appeared artificial with many postulates. Birth of 

the new quantum mechanical theory: DeBroglie: wave-particle duality, 

Heisenberg: uncertainty principle, Schroedinger: wave equation 



Anomalous Zeeman Effect 

• Electron has spin ½: Uhlenbeck & 

Goudsmit 

• Spin-orbit coupling: L+ ½       J in ½ 

increment: 3/2, 5/2, …  

If angular orbital quantum 

number is l, then the number of 

magnetic quantum level is: 

llllmL ,1,,1,   Example: l=2, mL=-2,-1,0,1,2 

The number of magnetic quantum states is  12 l

What is l if the number of magnetic quantum states is even?  

For example: 2: 
2

1
212  ss

Electron has a spin (no classical analog), and it is 1/2 

Classical theory, old quantum theory are untenable! 

A new, systematic approach (not piecemeal) is needed 



Relevance of Quantum Theory to Solid State 
Electronics 

 Essential to semiconductor physics is the concept of energy bands (band 
theory) and the energy band-gap, density-of-state: explained only with 
quantum theory 

 Behavior of electrons (individual): band theory explains the electron 
conduction behavior in semiconductors (classical conduction theory – Druid 
model – is insufficient) – conduction in nearly-filled band: hole model 

 Behavior of electrons (ensemble): Pauli exclusion principle and Fermi-Dirac 
statistics describes electron ensemble statistical behavior 

 Quantum mechanical transition theory: semi-classical quantum 
electrodynamics (as opposed to quantum electrodynamics) explains optical 
transitions in semiconductor 

 Quantization of elementary excitations in condensed matters: phonons, 
plasmons, excitons, and polaritons… quantum mechanical excitation and 
relaxation theory 



What is it? 

It is a set of rules and equations (like Newton’s 
laws) that allow us to calculate and predict the 
behavior of a quantum mechanical system 



Overview of Topics 
• Concept of wave-particle duality; Heisenberg 

uncertainty principle 

• Wave mechanics: DeBroglie wavelength, electron 

diffraction, Schroedinger equation 

• Basic concepts of wave mechanics  

• Examples: 

• Quantum wells 

• The hydrogen atom 

• Particle spin and statistics; Fermi-Dirac statistics 



Heisenberg’s uncertainty principle 

- It is  linked to Planck’s hypothesis of quantum of action: 

htE
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DD

- This principle completely decouples the modern quantum mechanics from the old 

concept, including Bohr’s model. 

- It says that it is fundamentally impossible and there is no need for a theory to be 

able to specify exactly the position (x) AND momentum (p) of a particle more 

accurately than the uncertainty given above. 

- For that matter, any other pair of quantities whose product has the unit of action 

(energy x time or position x momentum) obey the same principle. e. g. we know that 

angular momentum is quantized 

- Heisenberg theory: matrix approach to quantum mechanics 



Wave-particle duality 
• De Broglie observed that an electromagnetic wave has particle-like 

behavior, which is the photon 

• So, can a particle (such as an electron) behave like a wave? 

De Broglie came up with a hypothesis (1924): the wavelength 

associated with a particle of momentum p is: 

p
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Where does this come from? He observed that for light: 
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If this is the relation of photon momentum to its wavelength, then 

why not the same for a particle to its wavelength? 



Wave-particle duality (cont.) 

- As it turned out, the orbit of Bohr-Sommerfeld’s atom 

(old quantum theory) is an exact integral multiple of the 

De Broglie’s electron wavelength! This must be onto 

something, because it is such a natural explanation for 

the Bohr-Sommerfeld’s atom quantization model 
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Bohr-Sommerfeld angular momentum 

quantization postulate explained! 
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Wave-particle duality (cont.) 

- This gave motivation for Schroedinger to develop a 

different math to model quantum mechanics: wave 

mechanics 

- 3 years later (1927), Davidson and Germer 

demonstrated electron diffraction: experimentally 

showed that particles can indeed diffract like a wave! 

What is diffraction? 

What is the difference between particle and 

wave? 



Diffraction 

Electron diffraction from a crystal 

Diffraction and Interference 



An analogy to uncertainty principle 
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What is its frequency? 
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Shroedinger’s equation and wave mechanics 

Heisenberg’s matrix-based quantum mechanics is too complicated. 

With De Broglie’s wave theory, Schroedinger in 1926 came up with an 

alternative description: wave equation  

What does it mean? It’s an equation describing how a wave should 

behave. Like Maxwell’s equations for EM waves 

What wave is it? It’s a wave from which one can extract measurable 

physical quantities (energy, momentum, …) using a set of rules 

What are the rules?   
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Wave mechanics (cont.) 

What are the rules? 

A physical quantity is determined only by its “expected” value, given by: 
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where O-hat is the operator associated with that physical quantity. 

The wave itself does not necessarily have any physical meaning or is 

measurable  

O

    1;,,;,,*  tzyxtzyxdxdydz 

The wavefunction can be normalized: (if squared-integrable) 

A common interpretation of   tzyx ;,,  is that    2
;,, tzyx

 represents the particle “probability density”.  



Wave mechanics – Common basic features 

• Space and time can be decoupled (solution by part) 

• For the space component, many systems (problems) 

have eigenfunctions, which are quantum states 

associated with definite energy levels (often quantized, 

but not always) 

• Often, they form an orthogonal basis for the vector 

space of all solutions 

• A general solution can be expressed as a linear 

combination of the eigensolutions or eigenvectors 

• Equivalence between Schroedinger wave mechanics 

and Heisenberg matrix representation: each 

wavefunction is a vector, and yield the matrix operators 

in Heisenberg representation 

O



Example: free electron 

What is a free electron? 

An electron that experiences zero potential energy 

everywhere 
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Example: free electron (cont.) 
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Example: free electron (cont.) 
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Example: free electron (cont.) 

    tmkkxiCetx 2/2
,  Is a plane wave! 

What is its wavelength?  
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What does it look like?  
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Example: free electron (cont.) 
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What are the differences between these two electron waves? 
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,  is an electron plane wave! 
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Example: free electron (cont.) 

    tmkkxiCetx 2/2
,  is an electron plane wave! 

What is its energy? 
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It’s the quantum 

hypothesis! 

Relevance of electron plane-wave to solid state electronics: 

• In many crystalline semiconductors, electrons behave as if they are 

free (sort of!) and therefore, simple plane wave solutions can be 

applied in many problems 

• Simple relationship between energy and momentum allows simple 

calculation 

What is the relationship between energy and momentum? 
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A small test 
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An electron wave with momentum k1 

An electron wave with momentum k2 

What is the sum of the two electron 

waves?  



Example: semiconductor quantum well 
m

p
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So, why do we need quantum mechanics? 

It looks like quantum mechanics produces the same 

results as classical mechanics for free electrons 

Example: 

Semiconductor quantum wells 

- Application: diode lasers used in printers, 

CD players; 2D HEMT (high-electron 

mobility transistor) 

- Consist of layers of different 

semiconductor alloys 

- Electrons behave like in a simple 

potential well, called “quantum well” 



Example: hydrogen-like atom 
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The Schroedinger equation 

We can get rid of constants by using the "natural" unit: 
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Use spherical coordinate: it’s the natural symmetry of the problem 
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Hydrogen-like atom (cont.) 
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  ,2,1,0;1  integer negative-non a be must lllJ
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m is integer, why? 

As it turns out, the solution for 

this equation is Legendre 

polynomial, with the condition 

m must be =-l, -l+1, … l-1, l 
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Solutions for Y are called 

spherical harmonics: 

Where P is called associated Legendre polynomial 



Spherical harmonics 

-0.1

-0.05

0

0.05

0.1

-0.1

-0.05

0

0.05

0.1

-0.04

-0.02

0

0.02

0.04

-0.1

-0.05

0

0.05

0.1

-0.05
0

0.05

-0.05

0

0.05

-0.2

0

0.2

-0.05

0

0.05

-0.1

-0.05

0

0.05

0.1

-0.1
-0.05

0
0.05

0.1

-0.1

-0.05

0

0.05

0.1

-0.1

-0.05

0

0.05

0.1

-0.1
-0.05

0
0.05

0.1

-0.1
-0.05
0

0.05
0.1

-0.1
-0.05

0
0.05

0.1

-0.4

-0.2

0

0.2

0.4

-0.1
-0.05

0
0.05

0.1

-0.1

-0.05

0

0.05

0.1

-0.1

-0.05

0

0.05

0.1

-0.5

-0.25

0

0.25

0.5

-0.1

-0.05

0

0.05

0.1

Hydrogen atom.nb
Hydrogen atom.nb


Quantization of angular momentum 

  ,2,1,0;1  integer negative-non a be must lllJ

m must be =-l, -l+1, … l-1, l 

l is called the angular momentum quantum number 

m is called the magnetic quantum number 
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describes the quantum state associated with angular 

momentum l and magnetic quantum number m 

A quantum state can have multiple associated quantum 

numbers. Each quantum number usually represents a 

certain symmetry of the problem 



Hydrogen-like atom (cont.) 
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For the left-hand side: 
 

R
r

ll
R

r

Z
E

dr

dR

rdr

Rd
22

2 1
2

2 











 
0

122
22

2








 
 R

r

ll

r

Z
E

dr

dR

rdr

Rd

  















 




n

Zr
L

n

Zr
edrR l

ln

l
nZr

nlln
212

1
/

,The solution is: 

where L is a Laguerre polynomial, and n is a positive integer number. It 

is called radial quantum number 

Most important result: E is the energy and it is: Ry
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So, the quantum theory explains the atomic hydrogen 

spectra 



Atomic shell structure 

For most atoms, completion of the outer most orbits: 

2 S and 6 P states result in the lowest and stable 

energy configuration 



Particle spin and statistics 
• Two types of particles: those with even spin: J=0, 1, 2,… 

and those with odd spin: J=1/2, 3/2, 5/2,…  

• Pauli exclusion principle: No 2 odd-spin particles can 

occupy the same quantum state. For even-spin particles, 

many particles can occupy the same quantum state 

• As a result, each type has a different statistical behavior 

• Even spin particles obey Bose-Einstein statistics. (Bose-

Einstein condensation). They are called bosons. 

• Odd-spin particles obey Fermi-Dirac statistics; they are 

called fermions. This statistics is essential for 

semiconductor theory, as we deal with electrons, which 

are fermions. 



In a nutshell… 
 Quantum theory is crucial to the understanding of 

semiconductors that gives us today microelectronics and 
optoelectronics, photonics technologies 

 Yet, some aspects of electronic devices can be understood 
in terms of classical model concepts (not because the 
classical theory is correct, but) thanks to various quantum 
approximation approaches that facilitate the 
understandings in terms of classical behaviors (e. g. 
electron effective mass, holes as positive charge particles, 
particle diffusions,…) 

 But one must be mindful of the validity limits of these 
approximations and Quantum theory must be applied 
when appropriate 


