## Chapter 3 Band Structure and Carriers in Semiconductors SUMMARY

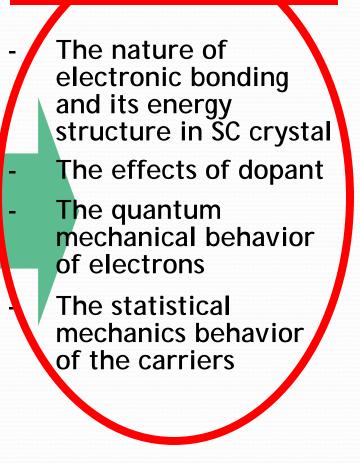
#### Chapter 3

#### What make semiconductors so useful?

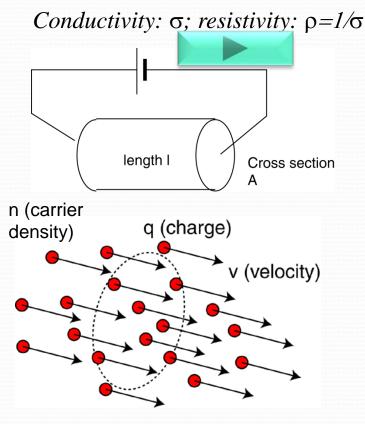
Macroscopic properties

- How do semiconductors have such a wide range of conductivity? Even for the same semiconductor compound, e.g.Si?
- How do some have positive Hall effects (p-type), and some have negative Hall effects (n-type)?
- How does the conductivity vary so much vs. temperature, the type and concentration level of impurities?
- Why does the carrier concentration exhibit exp(-E/kT) behavior?
- How do charge carriers have such a wide range of mobility? Which varies vs. temperature, carrier concentration, carrier types, and semiconductor composition?





#### **Basic electrical transport concepts**



$$I = AJ = Aqn\mu E = Aqn\mu \frac{V}{l}; \quad R = Aqn\mu \frac{V}{l};$$

So

Why does conductivity vary so much for semiconductor? vary a lot This is how  $(#1) \rightarrow$ 

Macroscopically: the resistance of a piece of material is linearly proportional to its length and inversely proportional to its cross section:  $R \propto \frac{l}{m}$ 

so a "specific resistance", called <u>resistivity</u>, can be

**defined:** 
$$R = \rho \frac{l}{A}$$
 or  $\rho = \frac{RA}{l}$  unit:  $\frac{\Omega \text{cm}^2}{\text{cm}} = \Omega \text{cm}$ 

**Microscopically:** Current density J= charge x carrier/unit volume x average carrier velocity: J = qnv

Steady state average carrier velocity is call <u>drift</u>  $v = \mu E$ velocity. **Drift velocity** where  $\mu$  is <u>defined</u> as <u>carrier mobility</u>, its unit is :

 $(cm/s)/(V/cm) = cm^2/V sec$ 

$$R = \frac{V}{I} = \frac{l}{Aqn\mu}; \quad \rho = \frac{RA}{l} = \frac{1}{qn\mu} \quad \text{or} \quad \sigma = qn\mu$$

vary a lot too!

 $\sigma = q n \mu$ 

#### What is "drift velocity"?

Classically, a freely moving charge has a velocity:  $v = \frac{Force}{mass}t = \frac{qE}{m}t$ 

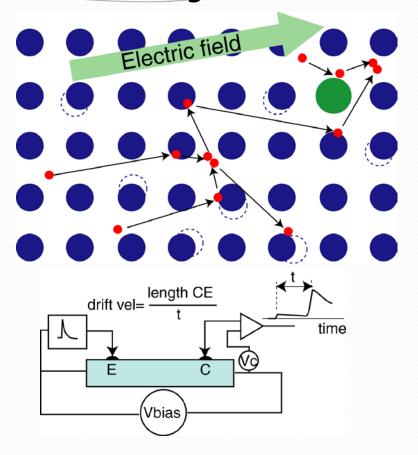
which increases with time indefinitely. But it can't, because of scattering as shown. There is a terminal "timeaveraged" velocity. If you measure the net traveled distance for a long time, the particle will have an average velocity called drift velocity. We can <u>define</u> a relaxation time  $\tau$  as the time for which:

$$v_d = \frac{qE}{m}\tau$$

So, mobility can be expressed as:

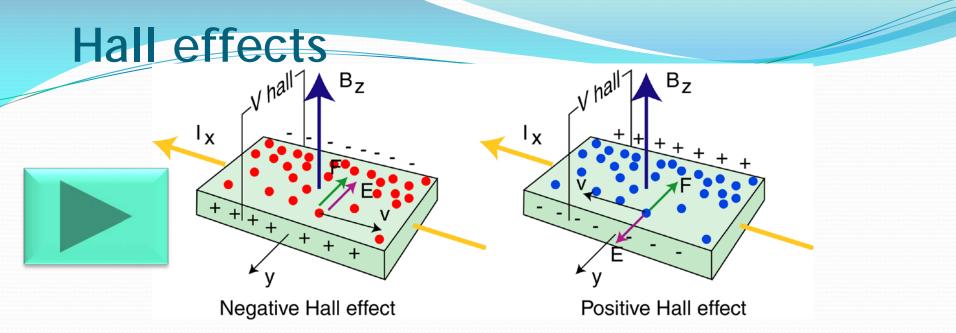
$$v_d = \frac{qE}{m}\tau = \mu E \implies \mu = \frac{q}{m}\tau$$

How does mobility vary vs. temperature, crystal quality (impurities & defects), carrier types, and semiconductor compositions? →



Relaxation time (scattering) varies with temp., crystal quality, carriers and SC compositions

Different SC compositions, carriers (n, p) have different masses



Electromotive (Lorentz) force:  $\mathbf{F} = q\mathbf{v} \times \mathbf{B}$  or:  $F_y = -qv_x B_z$  (In material  $\mathbf{B} \rightarrow \mathbf{H}$ ) At equilibrium, <u>there must be a force</u> that counters this Lorentz force: an electric field formed by the gradient of the carrier distribution:  $qE_y = qv_x B_z$   $E_y = v_x B_z$ 

For electrodes width w, the <u>Hall voltage</u> is:  $V_H = wE_y$ . Define Hall coefficient  $R_H$ :  $E_v = R_H J_x H_z \Rightarrow R_H = E_v / J_x H_z$ 

- Measured Hall voltage  $\rightarrow$  Sign indicates <u>carrier types</u> (n or p)
- Measured Hall voltage  $\rightarrow$  Hall field  $\rightarrow$  (Hall) drift velocity:

$$v_{x} = \mu E_{x} = \mu \frac{J_{x}}{\sigma} \Rightarrow \mu = v_{x} \frac{\sigma}{J_{x}} = \frac{v_{H}\sigma}{wH_{z}J_{x}} = R_{H}\sigma$$
Drift velocity  $\rightarrow$  carrier concentration:  

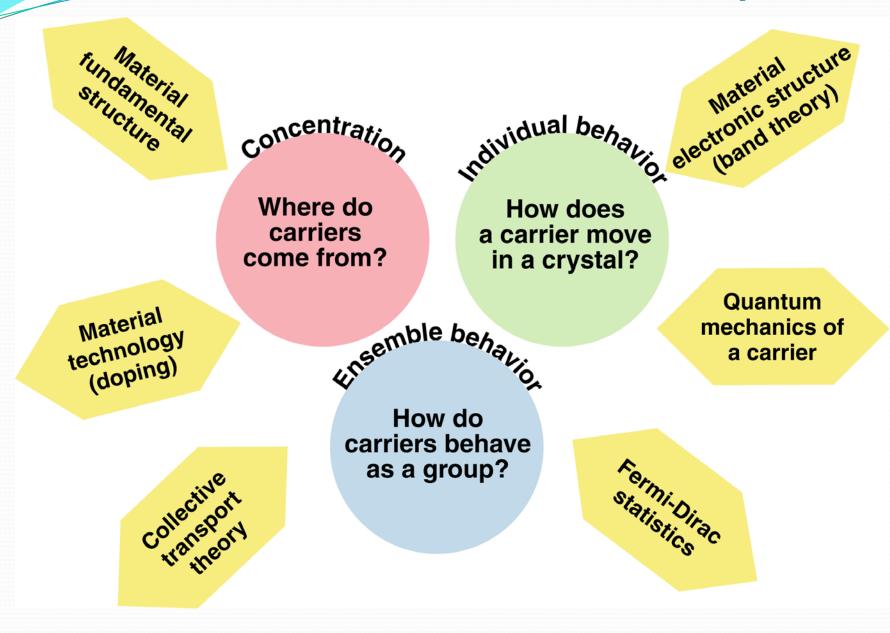
$$J_{x} = qnv_{x} \Rightarrow n = J_{x}/qv_{x} = \frac{J_{x}wH_{z}}{qV_{H}}$$
Drift velocity  $\rightarrow$  Hall mobility:  

$$\frac{V_{H}}{w} = E_{y} = v_{x}H_{z} \Rightarrow v_{x} = \frac{V_{H}}{wH_{z}}$$

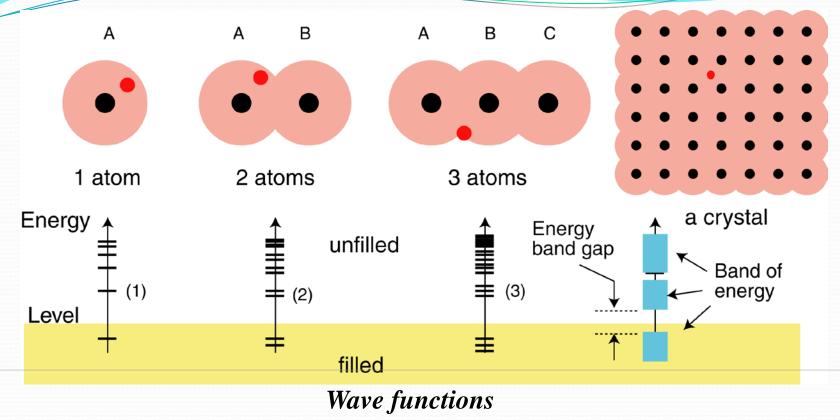
Key concepts

|             | Carrier transport<br>properties                                                                                                                              | Semicond structural properties                                                                                                                                            |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Macroscopic | -conductivity/<br>resistivity<br>-mobility<br>-relaxation time<br>-drift velocity<br>-Hall effects                                                           | <ul> <li>-n-type, p-type</li> <li>-doped, doping,</li> <li>-donor/acceptor</li> <li>-intrinsic/extrinsic</li> <li>-ambipolar</li> <li>-degenerate</li> </ul>              |
| Microscopic | -electron and hole<br>-lattice momentum<br>-effective mass<br>-density of state<br>-generation/recom-<br>bination<br>-Fermi-Dirac statistics<br>-Fermi level | <ul> <li>-covalent/ionic bond</li> <li>-energy bands:<br/>conduction/valence</li> <li>-band gap, direct<br/>indirect</li> <li>-band energy dispersion relation</li> </ul> |

#### How to solve the semiconductor puzzle



**Band** formation



 $\psi_A$ 

$$\begin{array}{cccc} \sim & \psi_A + \psi_B & \sim & b\psi_A - \psi_B + b\psi_C \\ \sim & \psi_A - \psi_B & \sim & a\psi_A + \psi_B + a\psi_C \\ & \sim & \psi_A - \psi_C \end{array}$$

$$\psi_{b;\mathbf{k}} = e^{i\mathbf{k}\cdot\mathbf{r}}u_{b;\mathbf{k}}(\mathbf{r})$$

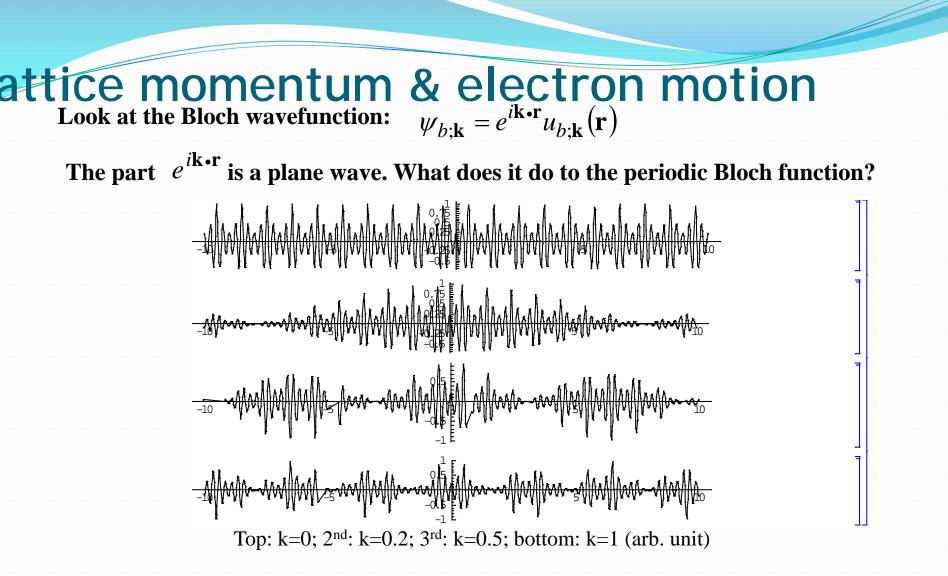
*b*: band (cond., val., ...) **r**: coordinates *x*, *y*, *z*  $u_{b;k}$ : Bloch wavefunction **k**: lattice momentum

#### Band formation (cont.)

- Each state in an atom yields an infinite number of states in an infinite crystal or condensed matter
- A discrete level of energy usually (but not necessarily) becomes an infinitely dense <u>energy band.</u> (if the atoms are infinitely apart, all the states are still degenerate into one energy level)
- <u>A memory refresher</u>: each quantum state has a definite energy level. But many states can have the same energy level, a situation called degeneracy. The states are said to be degenerate-usually a consequence of some geometry. Example: atomic angular momentum *l* has 2*l*+1 degenerate states. So, the number of energy levels is always smaller or equal to the number of states.
- A periodic crystal has the <u>translational symmetry</u>: it means that you can shift the crystal by an integral number of its lattice dimension and you can not tell the difference. The <u>lattice momentum</u> is the <u>quantum</u> <u>number of this symmetry</u>. All values of form a 3-D zone called <u>Brillouin zone</u>.

### **Comparison of quantum description**

| Electron in an atom        | Electron in a crystal or large condensed matter<br>(macromolecule) |
|----------------------------|--------------------------------------------------------------------|
| Radial quantum number (QN) | Band (conduction, valence, spin-orbit,) radial QN                  |
| Angular momentum QN        | Band angular momentum QN (s-like, p-like, d-like,)                 |
| Magnetic QN                | Magnetic QN                                                        |
|                            | Lattice momentum QN                                                |



It modulates the "local" Bloch function. Analogy: Christmas light string: each light bulb is a Bloch function,  $e^{i\mathbf{k}\cdot\mathbf{r}}$  modulation is to turn bulbs on-off in sequence. The light appears to move: this is how electron moves in a crystal lattice.

#### Comparison of momentum of a free particle with that in a crystal

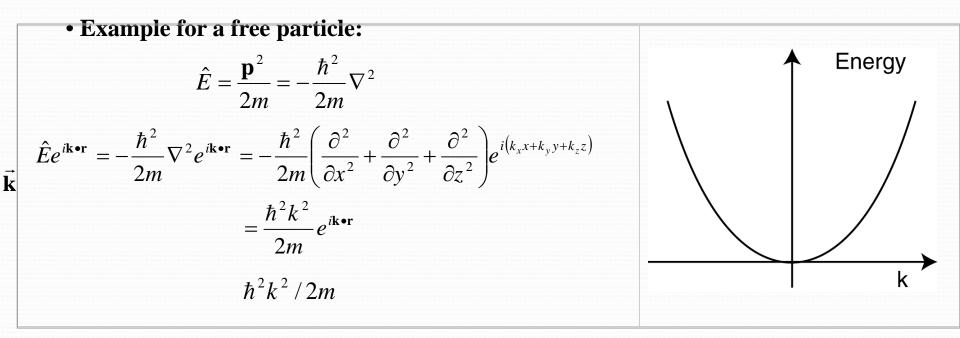
Free particleParticle in crystalWavefunction: $\psi(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}$  $\psi_{b;\mathbf{k}} = e^{i\mathbf{k}\cdot\mathbf{r}}u_{b;\mathbf{k}}(\mathbf{r})$ Momentum: $\hat{\mathbf{p}}e^{i\mathbf{k}\cdot\mathbf{r}} = \frac{\hbar}{i}\nabla e^{i\mathbf{k}\cdot\mathbf{r}} = \hbar\mathbf{k}e^{i\mathbf{k}\cdot\mathbf{r}}$  $\hat{\mathbf{p}}e^{i\mathbf{k}\cdot\mathbf{r}}u_{b;\mathbf{k}} = \frac{\hbar}{i}u_{b;\mathbf{k}}\nabla e^{i\mathbf{k}\cdot\mathbf{r}} + \frac{\hbar}{i}e^{i\mathbf{k}\cdot\mathbf{r}}\nabla u_{b;\mathbf{k}}$  $=\hbar\mathbf{k}$  $\hat{\mathbf{p}} = \hbar\mathbf{k} + \frac{\hbar}{i}\langle u_{b;\mathbf{k}} | \nabla u_{b;\mathbf{k}} \rangle = \hbar\mathbf{k}$ 

(the 2<sup>nd</sup> term usually vanishes because of paritymirror image symmetry)

Conclusion: the <u>expected</u> value of momentum of a particle with lattice momentum vector  $\vec{k}$  is  $\hbar k$ , which is the same as that of a free particle with the same momentum vector. <u>But: it is not a quantum state of the momentum operator.</u>

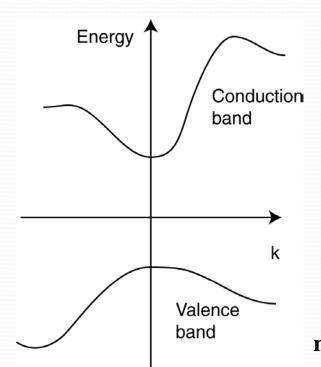
## • Each quantum state in a crystal with a lattice momentum has an energy

- This energy is a function of  $\mathbf{k}$ , also called as energy or E-k dispersion relation



- In a real crystal, the energy function of has a more complicated shape:
- The energy function shape (or structure) is unique for each band (conduction, valence, split-off, higher bands, ...)
- The only way to know for sure is by measurements
- Large computation programs have been used to obtain the energy band structure

#### **Properties near Band Extrema**

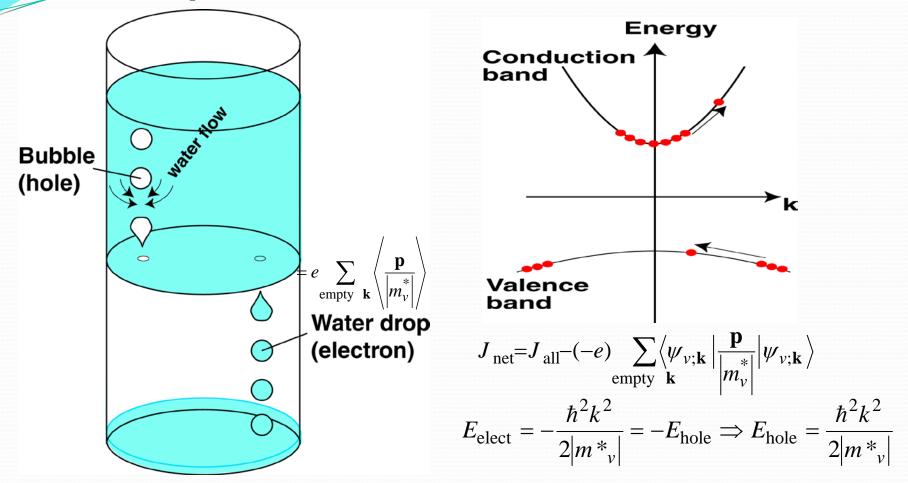


**Electrons or absence of electrons are usually** concentrated at energy band extrema Energy at band extrema can be extrapolated  $E_b(\mathbf{k}) = E_b + \vec{\nabla}_{\mathbf{k}} E \bullet \mathbf{k} + \frac{1}{2!} \frac{\partial^2 E}{\partial k_i \partial k_j} k_i k_j + \cdots$  $\approx E_b + \frac{1}{2!} \frac{\partial^2 E}{\partial k_i \partial k_j} k_i k_j$ If isotropic:  $E_b(\mathbf{k}) \approx E_b + \frac{1}{2} \frac{\partial^2 E}{\partial k^2} k^2 = E_b + \frac{\hbar^2 k^2}{2m^*}$  $\mathbf{m}^* \equiv \hbar^2 / \left( \frac{d^2 E}{dk^2} \right)$  is <u>defined</u> as the <u>effective mass</u>

• Effective mass (EM) approximation is the most important and useful approximation of all the results from the band theory. <u>It allows us to treat carriers as free particles</u>. <u>Many classical transport concepts are valid as long as the mass is EM</u>. For the rest of this course, everything will be done with effective mass approximation.

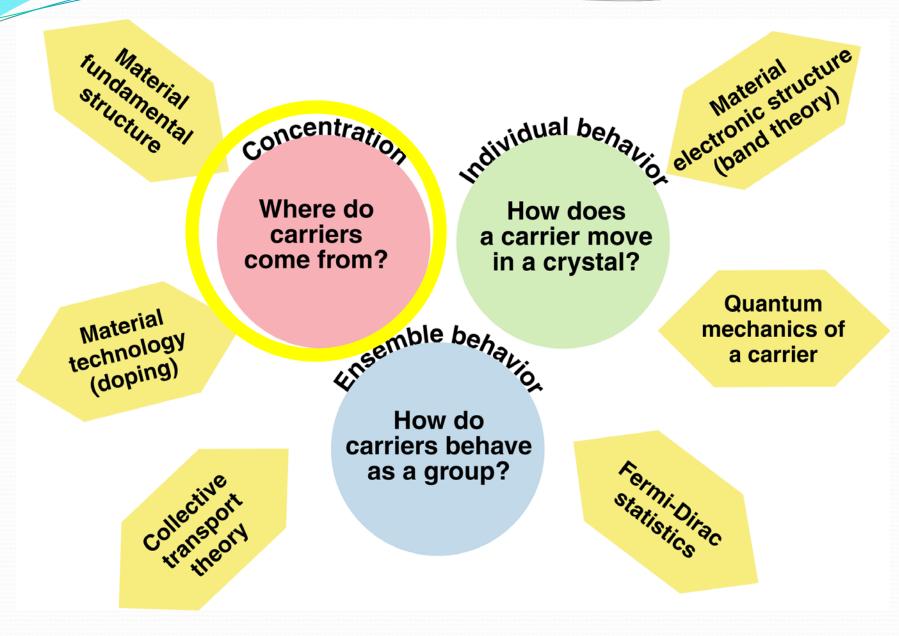
• Effective masses in various semiconductors are measured. A huge amount of work and published literature is concerned with measuring these values.

#### An important EM results: holes



• The absence of an electron in the valence band extremum (with negative effective mass) behaves like a <u>positive charge particle with valence effective</u> <u>mass</u>, defined as <u>hole</u>.

#### How to solve the semiconductor puzzle



# How do semiconductors have charge carriers?

- Intrinsic: thermal excitation from the valence band to the conduction band
- Extrinsic: carriers from dopants, impurities, defects

□ "Donor (D): donates extra electrons to the conduction band; single or multiple; D<sup>+</sup>: ionized donor.

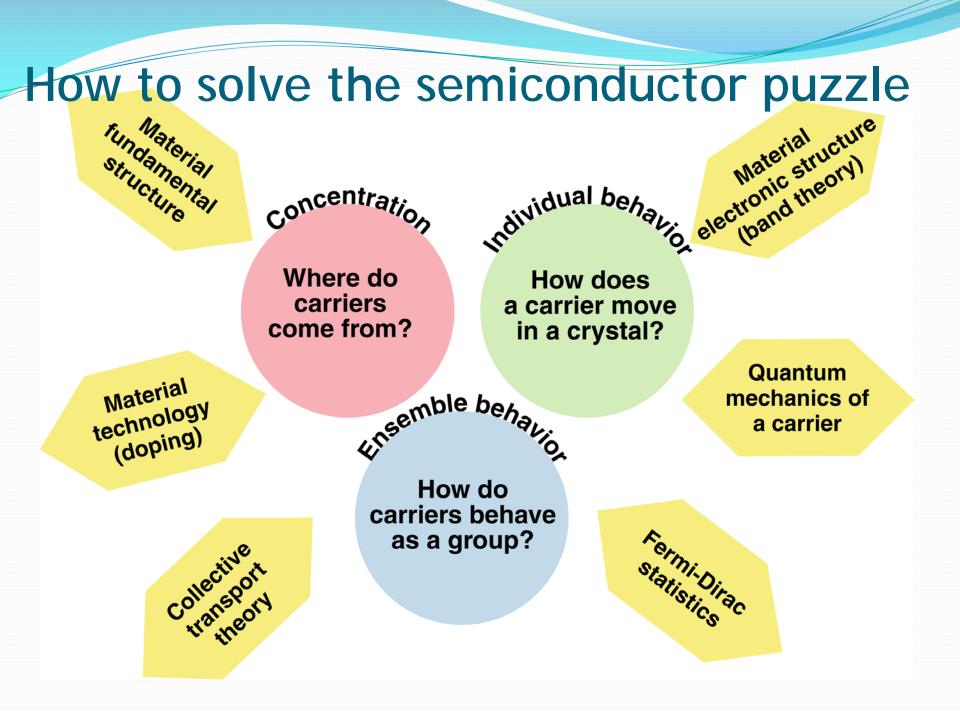
□ "Acceptor (A): accepts valence electrons, leave behind holes; single or multiple. A<sup>-</sup>: ionized acceptor.

- □ "Amphoteric dopant: either D or A, depending on site.
- □ " Shallow donor/acceptor: electron/hole energy level close to conduction band/valence band edge.

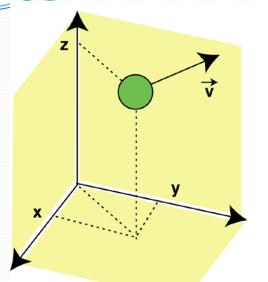
 $\square$  "Deep levels, deep traps: D *e* or A *h* energy level near mid gap.

□ " Lightly/heavily doped: result in nondegenerate/degenerate carrier population

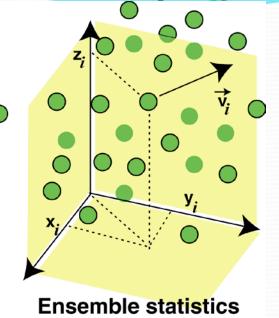
□ " Majority/minority carrier, ambipolar population



#### Statistical mechanics concepts



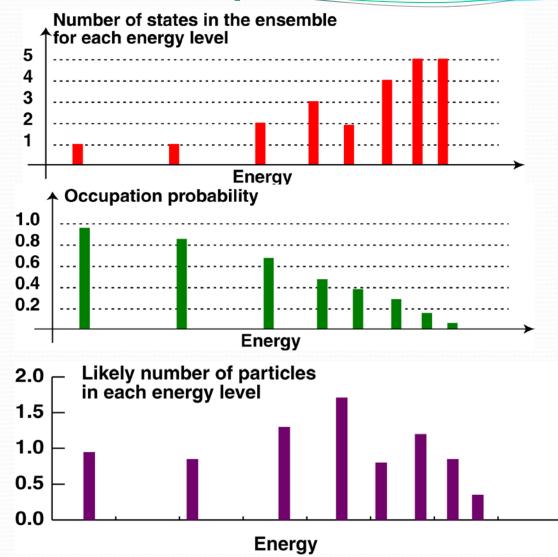
One particle description (x,y,z,vx,vy,vz, internal degree of freedom)



#### **Distribution functions**

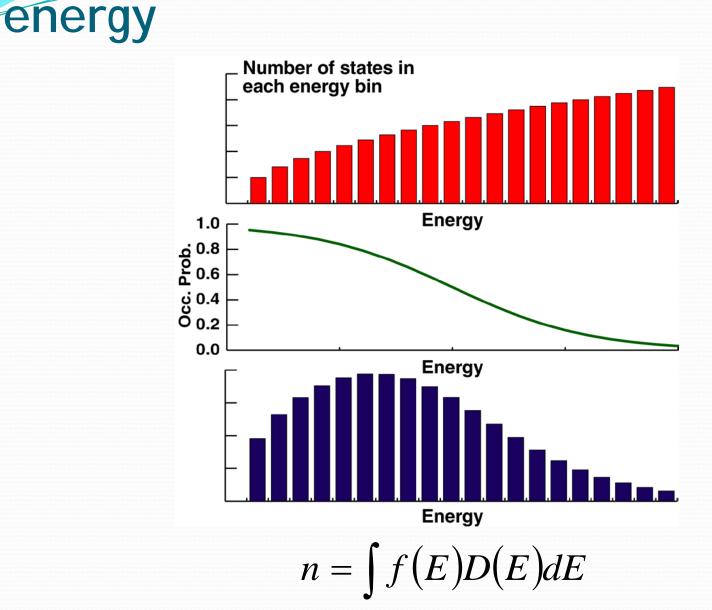
- Example 1: Fraction of atoms in r and r+ $\Delta r$ , with velocity between v and v+ $\Delta v$  at time t: global distribution.  $f(\mathbf{r}, \mathbf{v}, t) \Delta \mathbf{r} \Delta \mathbf{v}$
- Example 2: f(E) is the probability of having particles occupying states with energy *E*: also called <u>occupation</u> number: relative distribution.

#### How to use occupation number



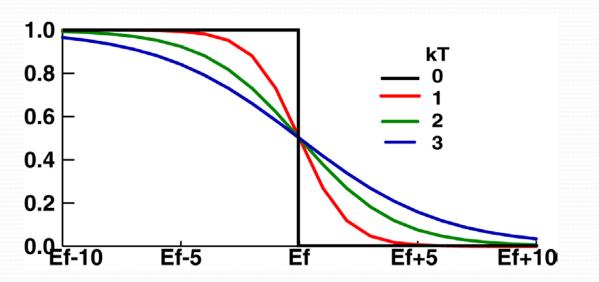
**Sum of Occ. Prob. x Number of states = Total number of particles** 

#### Distribution for dense or continuous



Fermi-Dirac distribution function  
$$f(E; E_f) = \frac{1}{1 + e^{(E - E_f)/k_BT}}$$

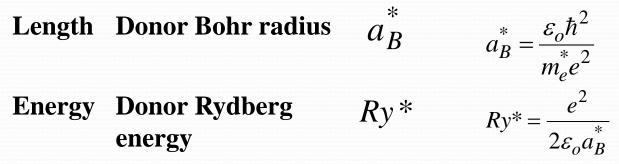
where:  $k_B$  is the Boltzmann's constant=0.08617 eV/Kelvin, T is the absolute temperature, and  $E_f$  is the energy that separates the filled and unfilled states at zero T, called <u>Fermi level</u>



In a given system,  $\mathbf{E}_{\mathbf{f}}$  is determined by the equation:  $n = \int f(E; E_f) D(E) dE$ 

#### Terminology and units

- 1. Electron/hole density: # of electron/hole per unit volume, e. g. cm<sup>3</sup>
- 2. (Ionized) Donor/Acceptor density: # of D/A / unit vol. (ionized or not
- 3. Semiconductor units of length and energy



 $m_{\rm e}^*$  is the electron effective mass,  $\varepsilon_{\rm o}$  is the dielectric constant Relation of these in terms of atomic units

$$a_B^* = \frac{\varepsilon_o \hbar^2}{m_e^* e^2} = \varepsilon_o \frac{m_o}{m_e^*} a_B$$
$$Ry^* = \frac{e^2}{2\varepsilon_o a_B^*} = \frac{1}{\varepsilon_o} \frac{a_B}{a_B^*} R_\infty = \frac{1}{\varepsilon_o^2} \frac{m_e^*}{m_o} R_\infty$$

Charge neutrality:  $n_o + D^+ = p_o + A^- n_o$ ,  $p_o$  are electron/hole densities at thermal equilibrium, D<sup>+</sup>/A<sup>-</sup> are ionized donor/acceptor densities

• At thermal equilibrium:  $n_o = N_c e^{-(E_c - E_f)/k_B T}$ ;  $p_o = N_v e^{-(E_f - E_v)/k_B T}$ 

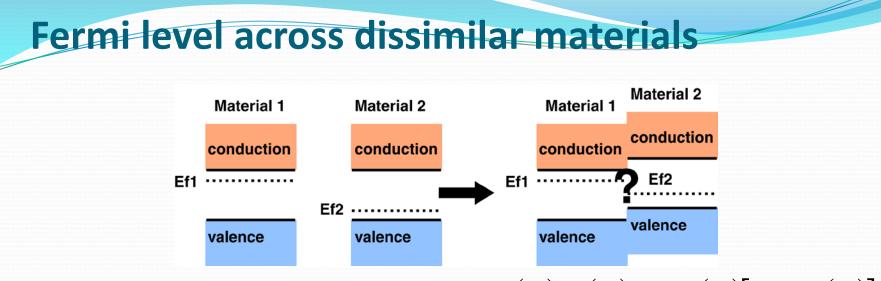
where 
$$N_C = g_c \frac{2}{a_B^{*3}} \left(\frac{k_B T}{4\pi R y^*}\right)^{3/2} N_V = g_v \left(\frac{m_h^*}{m_e^*}\right)^{3/2} \frac{2}{a_B^{*3}} \left(\frac{k_B T}{4\pi R y^*}\right)^{3/2} = \frac{g_v}{g_c} \left(\frac{m_h^*}{m_e^*}\right)^{3/2} N_C$$

•  $N_c$ ,  $N_v$  referred to as effective density of states are NOT really DOS, but only quantities for approximation convenience;  $g_c$ ,  $g_v$  are denegeracy factors of conduction and valence band. <u>Approximation</u>: intrinsic  $n_i$ ,  $p_i$  at <u>low intrinsic densities</u>

$$n_i = p_i = \sqrt{N_c N_v} e^{-E_g / k_B T}$$

**Approximation** at **low doping densities**:

$$n_o p_o = n_i p_i = n_i^2$$



Rate of electron going from 1 (left) to 2 (right):

 $N_1(E)f_1(E) \times N_2(E)[1-f_2(E)]$ 

Rate of electron going from 2 (right) to 1 (left):  $N_2(E)f_2(E) \times N_1(E)[1-f_1(E)]$ 

At equilibrium, the two rates must be equal; canceling all terms involving N:  $f_1(E) = f_2(E)$ 

$$\left[1 + e^{\left(E - E_{f1}\right)/k_BT}\right]^{-1} = \left[1 + e^{\left(E - E_{f2}\right)/k_BT}\right]^{-1} \qquad E_{f1} = E_{f2}$$

