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Chapter 3
What make semiconductors so useful?

- How do semiconductors have such a 
wide range of conductivity? Even for 
the same semiconductor compound, 
e. g. Si? - The nature of 

electronic bonding 
and its energy 
structure in SC crystal

- How do some have positive Hall 
effects (p-type), and some have 
negative Hall effects (n-type)?

- How does the conductivity vary so 
much vs. temperature, the type and 
concentration level of impurities?

- Why does the carrier concentration 
exhibit exp(-E/kT) behavior?

- How do charge carriers have such a 
wide range of mobility? Which varies 
vs. temperature, carrier 
concentration, carrier types,  and 
semiconductor composition?

- The effects of dopant
- The quantum 

mechanical behavior 
of electrons

- The statistical 
mechanics behavior 
of the carriers

Macroscopic properties
Microscopic theory



Basic electrical transport concepts
Conductivity: σ; resistivity: ρ=1/σ

so a “specific resistance”, called resistivity, can be 
defined:

Macroscopically: the resistance of a piece of 
material is linearly proportional to its length 
and inversely proportional to its cross section: 
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Microscopically: Current density J= charge 
x carrier/unit volume x average carrier 
velocity: qnvJ =

Steady state average carrier velocity is call drift 
velocity.

Drift velocity
Ev µ=

where µ is defined as carrier mobility, its unit is : 
(cm/s)/(V/cm) = cm2/V sec
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Why does conductivity vary so 
much for semiconductor?

This is how (#1)   

n (carrier 
density)



Classically, a freely moving charge has a 
velocity:

which increases with time indefinitely. 
But it can't, because of scattering as 
shown. There is a terminal "time-
averaged" velocity. If you measure the 
net traveled distance for a long time, the 
particle will have an average velocity 
called drift velocity. We can define a 
relaxation time τ as the time for which:

So, mobility can be expressed as: 
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How does mobility vary vs. 
temperature, crystal quality (impurities 
& defects), carrier types, and 
semiconductor compositions? 

What is "drift velocity"?



Hall effects

Electromotive (Lorentz) force: BvF ×= q or: . zxy BqvF −= (In material BH)

At equilibrium, there must be a force that counters this Lorentz force: an electric field 
formed by the gradient of the carrier distribution: zxy BqvqE = zxy BvE =

For electrodes width w, the Hall voltage is: VH=wEy . Define Hall coefficient RH:
zxyHzxHy HJERHJRE /=⇒=

• Measured Hall voltage Sign indicates carrier types (n or p)
• Measured Hall voltage Hall field(Hall) drift velocity:

• Drift velocitycarrier concentration: 

• Drift velocityHall mobility: 
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Key concepts



How to solve the semiconductor puzzle



Band formation

Wave functions
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k: lattice momentum



Band formation (cont.)
• Each state in an atom yields an infinite number of states in an infinite 

crystal or condensed matter 
• A discrete level of energy usually (but not necessarily) becomes an 

infinitely dense energy band. (if the atoms are infinitely apart, all the 
states are still degenerate into one energy level) 

• A memory refresher: each quantum state has a definite energy level. 
But many states can have the same energy level, a situation called 
degeneracy. The states are said to be degenerate-usually a consequence 
of some geometry. Example: atomic angular momentum l has 2l+1 
degenerate states. So, the number of energy levels is always smaller or 
equal to the number of states. 

• A periodic crystal has the translational symmetry: it means that you 
can shift the crystal by an integral number of its lattice dimension and 
you can not tell the difference. The lattice momentum is the quantum 
number of this symmetry. All values of  form a 3-D zone called 
Brillouin zone.



Radial quantum number (QN) Band (conduction, valence, spin-orbit, …) radial QN

Angular momentum QN Band angular momentum QN (s-like, p-like, d-like,…)

Magnetic QN Magnetic QN

Lattice momentum QN

Electron in an atom Electron in a crystal or large condensed matter 
(macromolecule)

Comparison of quantum description



attice momentum & electron motion
Look at the Bloch wavefunction: ( )rk
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The part            is a plane wave. What does it do to the periodic Bloch function? rk•ie
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It modulates the "local" Bloch function. Analogy: Christmas light string: each light 
bulb is a Bloch function,             modulation is to turn bulbs on-off in sequence. The 
light appears to move: this is how electron moves in a crystal lattice.
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Comparison of momentum of a free 
particle with that in a crystal
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Wavefunction:     

Momentum:    

(the 2nd term usually vanishes because of parity-
mirror image symmetry)

Free particle Particle in crystal

Conclusion: the expected value of momentum of a particle with lattice momentum 
vector     is         , which is the same as that of a free particle with the same momentum 
vector. But: it is not a quantum state of the momentum operator.
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Energy and Lattice Momentum
• Each quantum state in a crystal with a lattice momentum  has an energy

• This energy is a function of     , also called as energy or E-k dispersion relationk


• Example for a free particle:
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• In a real crystal, the energy function of  has a more complicated shape:
- The energy function shape (or structure)  is unique for each band 
(conduction, valence, split-off, higher bands, …)
- The only way to know for sure is by measurements
- Large computation programs have been used to obtain the energy band 
structure
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Properties near Band Extrema
Electrons or absence of electrons are usually 
concentrated at energy band extrema
Energy at band extrema can be extrapolated
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m*                                     is defined as the effective mass( )222 // dkEd≡

• Effective mass (EM) approximation is the most important and useful 
approximation of all the results from the band theory. It allows us to treat 
carriers as free particles. Many classical transport concepts are valid as long 
as the mass is EM. For the rest of this course, everything will be done with 
effective mass approximation.
• Effective masses in various semiconductors are measured. A huge amount of 
work and published literature is concerned with measuring these values.



An important EM results: holes
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• The absence of an electron in the valence band extremum (with negative 
effective mass) behaves like a positive charge particle with valence effective 
mass, defined as hole.



How to solve the semiconductor puzzle



How do semiconductors have charge 
carriers?

• Intrinsic: thermal excitation from the valence band to the conduction band

• Extrinsic: carriers from dopants, impurities, defects

� ¨ Donor (D): donates extra electrons to the conduction band; single 
or multiple; D+: ionized donor.
� ¨ Acceptor (A): accepts valence electrons, leave behind holes; single 
or multiple. A-: ionized acceptor.
� ¨ Amphoteric dopant: either D or A, depending on site. 
� ¨ Shallow donor/acceptor: electron/hole energy level close to 
conduction band/valence band edge.
� ¨ Deep levels, deep traps: D e or A h energy level near mid gap.
� ¨ Lightly/heavily doped: result in nondegenerate/degenerate carrier 
population
� ¨ Majority/minority carrier, ambipolar population



How to solve the semiconductor puzzle



Statistical mechanics concepts

Distribution functions
• Example 1: : Fraction of atoms in r and r+∆r, with velocity between v and v+∆v
at time t: global distribution.

• Example 2:            is the probability of having particles occupying states with 
energy E: also called occupation number: relative distribution.

( ) vrvr ∆∆tf ,,

( )Ef



How to use occupation number

Sum of Occ. Prob. x Number of states = Total number of particles



Distribution for dense or continuous 
energy

( ) ( )∫= dEEDEfn



Fermi-Dirac distribution function
( ) ( ) TkEEf

Bfe
EEf /1
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where: kB is the Boltzmann’s constant=0.08617 eV/Kelvin, T is the absolute 
temperature, and Ef is the energy that separates the filled and unfilled states at 
zero T, called Fermi level

In a given system, Ef is determined by the equation: ( ) ( )∫= dEEDEEfn f;



Terminology and units
1. Electron/hole density: # of electron/hole per unit volume, e. g. cm3

2. (Ionized) Donor/Acceptor density: # of D/A / unit vol. (ionized or not)
3. Semiconductor units of length and energy
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me* is the electron effective mass, εo is the dielectric constant
Relation of these in terms of atomic units
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· Charge neutrality:                                no, po are electron/hole 
densities at thermal equilibrium, D+/A- are ionized 
donor/acceptor densities
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• Nc, Nv referred to as effective density of states are NOT really 
DOS, but only quantities for approximation convenience; gc, gv
are denegeracy factors of conduction and valence band.
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Approximation: intrinsic ni, pi at low intrinsic densities

Approximation at low doping densities:



Fermi level across dissimilar materials

Rate of electron going from 1 
(left) to 2 (right):
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Rate of electron going from 2 
(right) to 1 (left):
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At equilibrium, the two rates must be equal; canceling all 
terms involving N: ( ) ( )EfEf 21 =
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